Theory and Practice of Deep-Hole Machining

Viktor P. Astakhov

CRCPress
Chapter 1: Basic Considerations And Definitions
1.1. Introduction
1.2. Classification of Deep-Hole Drilling Operations
1.3. What Is The Meaning Of ‘Self-Piloting’?
1.4. Deep-Hole Machining System
1.5. References

Chapter 2: Tool Geometry
2.1. Introduction
2.2. Basics Of Cutting Tool Geometry
 2.2.1. System of Planes
 2.2.2. System of Angles
 2.2.3. Tool-in-Hand System
 2.2.4. Tool-in-Machine System
 2.2.5. Tool-in-Use System
 2.2.6. Determination of the Uncut Chip Thickness and The Active Length of the Cutting Edge
 2.2.7. Examples
2.3. Vector Analysis of Cutting Tool Geometry
 2.3.1. Basics of Vector Analysis
 2.3.2. Methodology of Application
 2.3.3. Examples
2.4. Fundamentals of the selection of Geometrical Parameters
 2.4.1. Rake Angle
 2.4.1.1. General Information
 2.4.1.2. Influence on the Cutting Process
 2.4.1.3. Influence on the Components of The Cutting Force
2.4.1.4. Selection

2.4.2. Cutting Edge Angle
 2.4.2.1. Single Point Cutting Tools
 2.4.2.2. Twist Drills
 2.4.2.3. Self-Piloting Tools
 2.4.2.4. Special Cases

2.4.3. The Flank (Relief) Angle
 2.4.3.1. Flank Angle and Tool Life
 2.4.3.2. Flank Angle and Cutting Speed
 2.4.3.3. Flank Angle and Uncut Chip Thickness

2.3.4. Radius of the Cutting Edge

2.3.5. References

Chapter 3: Gundrills and Gundrilling

3.1. Brief Analysis Of The Existent Design Elements Of The Gundrill Tip
 3.1.1. Rake Surface
 3.1.2. Flank (Relief) Surfaces of the Other and Inner Cutting Edges
 3.1.3. Shoulder Dub-Off Surface

3.2. Rake Surface Geometry Model
 3.2.1. Case 1
 3.2.2. Case 2
 3.2.3. Case 3
 3.2.4. Case 4
 3.2.5. Flow Chart and Programme

3.3. Flank (Relief) Surface Geometry Model
 3.3.1. Case 1
 3.3.2. Case 2
 3.3.3. Case 3
 3.3.4. Case 4
 3.3.5. Numerical Examples of The Analysis of Gundrill Geometry

3.4. References

Chapter 4: BTA and Ejector Drills

4.1. Definition and Common Designs
4.2. Geometry of Flank and Rake Surfaces
4.3. Cutting Force System
4.4. Static, Buckling and Dynamic Stability
4.5. Action of the Supporting Pads
4.6. Accuracy of Machined Holes
4.7. References
Chapter 5: Cutting Fluids (Coolants) in Deep-Hole Drilling

5.1. Introduction

5.2. Types of Cutting Fluids

5.3. Cutting Fluid Functions and Actions

5.4. Models of Cutting Fluid Flow
 5.4.1. Gundrills
 5.4.1.1. Energy Losses in Gundrilling System
 5.4.1.2. Chip Removal
 5.4.1.3. Optimum Flow Rate and Required Inlet Pressure
 5.4.2. BTA Drills
 5.4.2.1. Energy Losses
 5.4.2.2. Stability of Cutting Fluid Flow in Annular Channels
 5.4.2.3. Optimum Flow Rate and Inlet Pressure
 5.4.3. Ejector Drills
 5.4.3.1. Design of Traditional Ejectors
 5.4.3.2. Design of Non-Traditional Ejectors
 5.4.3.3. Pressure and Flow Rate Distribution in Ejector Drills
 5.4.3.4. Optimum Flow rate and Inlet Pressure

5.5. Bottom Clearance Topology: Interference and Coolant Flow
 5.5.1 Introduction
 5.5.1.1. Tool Life
 5.5.1.2. Strength of Cutting Wedge
 5.5.1.3. Condition of Drill Free Penetration – Interference
 5.5.2. Analysis of Bottom Clarence Topology
 5.5.2.1. Gundrilling
 5.5.2.2. BTA and Ejector Drills
 5.5.3. Criteria of Drill Free Penetration
 5.5.4. Coolant in Bottom Clearance
 5.5.4.1. Gundrilling
 5.5.4.2. BTA and Ejector Drills

5.6. References

Chapter 6: Tool Materials

6.1. Basic Types of Tool Materials Used for Deep-Hole Drills

6.2. Selection of Tool Material for Particular Drilling Conditions

6.3. Coatings

6.4. References
Chapter 7: Machines and Accessories
7.1. Types of Deep Hole Machines and Their Major Parameters
7.2. Parameters of Deep Hole Machines
7.3. Typical Design Mistakes
7.4. Starting Bushings and Bushings Holders
7.5. Steady Rests
7.6. Tool Holders
7.7. Cutting Fluid Supply Systems
7.8. Active and Passive Control of Deep-Hole Machines
7.9. References

Chapter 8: Stability, Accuracy and Metrology of Deep-Hole Machining
8.1. Stability
 8.1.1. Entrance Stability
 8.1.1.1. Mechanisms Of Bell Mouth Formation As The Prime Cause For Entrance Instability
 8.1.1.2. Influence Technological and Design Parameters
 8.1.1.3. Measures to Improve Entrance Stability
 8.1.2. Buckling Stability
 8.1.3. Static Stability
 8.1.4. Dynamic Stability
8.2. Classification of Inaccuracies in Deep-Hole Machining
8.3. Diametral and Location Deviation
8.4. Surface Integrity
8.5. Lobbing and Spiralling
8.6. Deviations in the Position of the Longitudinal Axis
8.7. Deep Hole Metrology
8.8. References

Chapter 9: Case Studies
9.1. Classification of Work Materials
9.2. Metallurgy and Mechanical Properties
9.3. Machining Regimes
9.4. Special Cases
 9.4.1. Automotive Applications
 9.4.2. Trepansing Drills
 9.4.3. Boring Tools
 9.4.4. Combined Tools
9.5. References